Exercise 50

For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a linear equation that models the data.

x	5	10	20	25
$k(x)$	13	28	58	73

Solution

This table represents a linear function because as x increases by $5, k(x)$ increases by 15 . Two points on this line are

$$
(5,13) \text { and }(10,28) .
$$

The general equation for a line is

$$
y=m x+b .
$$

The first point says that when $x=5, y=13$.

$$
13=m(5)+b
$$

The second point says that when $x=10, y=28$.

$$
28=m(10)+b
$$

This is a system of two equations with two unknowns that can be solved.

$$
\left\{\begin{aligned}
5 m+b & =13 \\
10 m+b & =28
\end{aligned}\right.
$$

Subtract the respective sides of these equations to eliminate b.

$$
5 m-10 m=13-28 \quad \rightarrow \quad-5 m=-15 \quad \rightarrow \quad m=3
$$

Multiply both sides of the first equation by -2

$$
\left\{\begin{aligned}
-10 m-2 b & =-26 \\
10 m+b & =28
\end{aligned}\right.
$$

and add the respective sides to eliminate m.

$$
-2 b+b=-26+28 \quad \rightarrow \quad-b=2 \quad \rightarrow \quad b=-2
$$

Now that m and b have been solved for, the line is known.

$$
y=3 x-2
$$

